104 research outputs found

    Follicular thyroid carcinoma: Differences in clinical relevance between minimally invasive and widely invasive tumors

    Get PDF
    Evidence on the biological behavior and clinical courses of minimally invasive and widely invasive follicular thyroid carcinoma (MI-FTC, WI-FTC) is still debatable. The current study was conducted to identify differences between MI and WI tumors and those prognostic parameters influencing late outcome such as local recurrence and survival

    Role of crossmatch testing when Luminex-SAB is negative in renal transplantation

    No full text
    The human leukocyte antigen (HLA) system plays an important role in the acceptance of renal graft. Long and better graft survival has been reported in patients with HLA-identical siblings and a nonreactive cytotoxicity assay (CDC). New methods of HLA-typing and anti-HLA antibody detection techniques such as flow cytometry, solid-phase immunoassays, or antigen bead assays have further improved the outcomes of renal transplant recipients. In the present review, the explicit details of these methodologies are discussed in detail

    Targeted delivery of C/EBPα -saRNA by pancreatic ductal adenocarcinoma-specific RNA aptamers inhibits tumor growth in vivo

    No full text
    The 5-year survival rate for pancreatic ductal adenocarcinoma (PDAC) remains dismal despite current chemotherapeutic agents and inhibitors of molecular targets. As the incidence of PDAC constantly increases, more effective multidrug approaches must be made. Here, we report a novel method of delivering antitumorigenic therapy in PDAC by upregulating the transcriptional factor CCAAT/enhancer-binding protein-α (C/EBPα), recognized for its antiproliferative effects. Small activating RNA (saRNA) duplexes designed to increase C/EBPα expression were linked onto PDAC-specific 2′-Fluropyrimidine RNA aptamers (2′F-RNA) - P19 and P1 for construction of a cell type–specific delivery vehicle. Both P19- and P1-C/EBPα-saRNA conjugates increased expression of C/EBPα and significantly suppressed cell proliferation. Tail vein injection of the saRNA/aptamer conjugates in PANC-1 and in gemcitabine-resistant AsPC-1 mouse-xenografts led to reduced tumor size with no observed toxicity. To exploit the specificity of the P19/P1 aptamers for PDAC cells, we also assessed if conjugation with Cy3 would allow it to be used as a diagnostic tool on archival human pancreatic duodenectomy tissue sections. Scoring pattern from 72 patients suggested a positive correlation between high fluorescent signal in the high mortality patient groups. We propose a novel aptamer-based strategy for delivery of targeted molecular therapy in advanced PDAC where current modalities fail

    Developing an online predictor to predict product sulfur concentration for HDS unit

    Get PDF
    Hydrodesulfurization (HDS) is an important process in refining industries. Advanced control system (e.g. model predictive controller) requires on-line measurement of the product sulfur at the reactor outlet. However, most HDS processes do not have a sulfur analyzer at the reactor outlet. In order to predict product sulfur concentration usually a data based sulfur predictor is developed. Performance of data based predictor is usually poor since some of the input parameters (e.g. feed sulfur concentration) are unknown. The objective of this thesis is to overcome these limitations of data based predictors and develop an online product sulfur predictor for HDS unit. In this thesis, a hybrid model is proposed, developed and validated (using industrial data), which could predict product sulfur concentration for online HDS system. The proposed hybrid structure is a combination of a reaction kinetics based HDS reactor model and an empirical model based on support vector regression (SVR). The mechanistic model runs in off-line mode to estimate the feed sulfur concentration while the data based model uses the estimated feed sulfur concentration and other process variables to predict the product sulfur concentration. The predicted sulfur concentration can be compared with the lab measurements or sulfur analyzer located further downstream of the process at the tankage. In case there is a large discrepancy, the predictor goes to a calibration mode and uses the mechanistic model to re-estimate the feed sulfur concentration. The detailed logic for the online prediction is also developed. Finally a Matlab based Graphical User Interface (GUI) has been developed for the hybrid sulfur predictor for easy implementation to any HDS process

    Multiscale analysis of materials with anisotropic microstructure as micropolar continua

    Get PDF
    Multiscale procedures are often adopted for the continuum modeling of materials composed of a specific micro-structure. Generally, in mechanics of materials only two-scales are linked. In this work the original (fine) micro-scale description, thought as a composite material made of matrix and fibers/particles/crystals which can interact among them, and a scale-dependent continuum (coarse) macro-scale are linked via an energy equivalence criterion. In particular the multiscale strategy is proposed for deriving the constitutive relations of anisotropic composites with periodic microstructure and allows us to reduce the typically high computational cost of fully microscopic numerical analyses. At the microscopic level the material is described as a lattice system while at the macroscopic level the continuum is a micropolar continuum, whose material particles are endowed with orientation besides position. The derived constitutive relations account for shape, texture and orientation of inclusions as well as internal scale parameters, which account for size effects even in the elastic regime in the presence of geometrical and/or load singularities. Applications of this procedure concern polycrystals, wherein an important descriptor of the underlying microstructure gives the orientation of the crystal lattice of each grain, fiber reinforced composites, as well as masonry-like materials. In order to investigate the effects of micropolar constants in the presence of material non central symmetries, some numerical finite element simulations, with elements specifically formulated for micropolar media, are presented. The performed simulations, which extend several parametric analyses earlier performed [1], involve two-dimensional media, in the linear framework, subjected to compression loads distributed in a small portion of the medium

    The impact of COVID-19 on kidney transplant recipients in pre-vaccination and delta strain era: a systematic review and meta-analysis

    Get PDF
    Herein, we performed a meta-analysis of published clinical outcomes of corona virus disease 2019 (COVID-19) in hospitalized kidney transplant recipients. A systematic database search was conducted between December 1, 2019 and April 20, 2020. We analyzed 48 studies comprising 3137 kidney transplant recipients with COVID-19. Fever (77%), cough (65%), dyspnea (48%), and gastrointestinal symptoms (28%) were predominant on hospital admission. The most common comorbidities were hypertension (83%), diabetes mellitus (34%), and cardiac disease (23%). The pooled prevalence of acute respiratory distress syndrome and acute kidney injury were 58% and 48%, respectively. Invasive ventilation and dialysis were required in 24% and 22% patients, respectively. In-hospital mortality rate was as high as 21%, and increased to over 50% for patients in intensive care unit (ICU) or requiring invasive ventilation. Risk of mortality in patients with acute respiratory distress syndrome (ARDS), on mechanical ventilation, and ICU admission was increased: OR = 19.59, OR = 3.80, and OR = 13.39, respectively. Mortality risk in the elderly was OR = 3.90; however, no such association was observed in terms of time since transplantation and gender. Fever, cough, dyspnea, and gastrointestinal symptoms were common on admission for COVID-19 in kidney transplant patients. Mortality was as high as 20% and increased to over 50% in patients in ICU and required invasive ventilation

    Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach

    Get PDF
    Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases

    Identification of sixteen novel candidate genes for late onset Parkinson’s disease

    Get PDF
    Background Parkinson’s disease (PD) is a neurodegenerative movement disorder affecting 1–5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. Methods The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). Results Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10− 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. Conclusions Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment

    Correction to: Two years later: Is the SARS-CoV-2 pandemic still having an impact on emergency surgery? An international cross-sectional survey among WSES members

    Get PDF
    Background: The SARS-CoV-2 pandemic is still ongoing and a major challenge for health care services worldwide. In the first WSES COVID-19 emergency surgery survey, a strong negative impact on emergency surgery (ES) had been described already early in the pandemic situation. However, the knowledge is limited about current effects of the pandemic on patient flow through emergency rooms, daily routine and decision making in ES as well as their changes over time during the last two pandemic years. This second WSES COVID-19 emergency surgery survey investigates the impact of the SARS-CoV-2 pandemic on ES during the course of the pandemic. Methods: A web survey had been distributed to medical specialists in ES during a four-week period from January 2022, investigating the impact of the pandemic on patients and septic diseases both requiring ES, structural problems due to the pandemic and time-to-intervention in ES routine. Results: 367 collaborators from 59 countries responded to the survey. The majority indicated that the pandemic still significantly impacts on treatment and outcome of surgical emergency patients (83.1% and 78.5%, respectively). As reasons, the collaborators reported decreased case load in ES (44.7%), but patients presenting with more prolonged and severe diseases, especially concerning perforated appendicitis (62.1%) and diverticulitis (57.5%). Otherwise, approximately 50% of the participants still observe a delay in time-to-intervention in ES compared with the situation before the pandemic. Relevant causes leading to enlarged time-to-intervention in ES during the pandemic are persistent problems with in-hospital logistics, lacks in medical staff as well as operating room and intensive care capacities during the pandemic. This leads not only to the need for triage or transferring of ES patients to other hospitals, reported by 64.0% and 48.8% of the collaborators, respectively, but also to paradigm shifts in treatment modalities to non-operative approaches reported by 67.3% of the participants, especially in uncomplicated appendicitis, cholecystitis and multiple-recurrent diverticulitis. Conclusions: The SARS-CoV-2 pandemic still significantly impacts on care and outcome of patients in ES. Well-known problems with in-hospital logistics are not sufficiently resolved by now; however, medical staff shortages and reduced capacities have been dramatically aggravated over last two pandemic years
    • …
    corecore